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Abstract
This paper presents an analytical solution to a coupled vibration problem of fluid-conveying
double-walled carbon nanotubes (DWCNTs) and analyzes the influences of nonlocal effect,
aspect ratio and van der Waals interaction on the fundamental frequency. According to the
analysis, the results show that the vibration frequencies of the first three modes of DWCNTs are
lower than those of single-walled carbon nanotubes (SWCNTs). The trend is more obvious
when the flow velocity is high. It can also be found that the velocity of vibration-induced flutter
instability for DWCNTs is lower than that of SWCNTs. In addition, the frequency of mode 1 of
DWCNTs decreases with increasing nonlocal parameter. However, the frequency increases as
the aspect ratio and the van der Waals interaction increased, especially at higher flow velocities.

1. Introduction

Recently, the study of fluid-conveying carbon nanotubes
(CNTs) has become of great interest to many researchers [1–4].
This is because CNTs can be used as nanopipes for conveying
fluids due to its unique hollow nanostructure and superior
mechanical characteristics [5–8]. It is well known that
experiments to measure the flow characteristics of fluid-
conveying CNTs are quite difficult since a CNT is extremely
small. To understand the dynamic behaviors of a CNT
conveying fluid, molecular-dynamics (MD) simulation is a
powerful tool for the theoretical study [9–13]. For instance,
Hummer et al [9] performed MD simulation to study a
nonpolar CNT with a one-dimensionally ordered chain of
water molecules. They observed pulse-like transmission of
water through the nanotube and found a minute reduction in
the attraction between the tube wall and water. Chen et al
[11] examined the influence of nanotube flexibility on the
transport diffusion of CH4 in (20, 0) and (15, 0) nanotubes.
They found that the transport diffusivities were extremely large
compared to other known materials when flexibility was taken
into account. Jeong et al [12] studied the torsional responses
of hollow and filled CNTs under a combination of tension and
torsion using classical molecular-dynamics simulations.

1 Author to whom any correspondence should be addressed.

In addition, the continuum elasticity theory also has been
regarded as an effective method [14–17]. For example, Yoon
et al [14] studied the influence of internal moving fluid on
free vibration and flow-induced flutter instability of cantilever
CNTs based on a continuum elastic model. Yan et al
[17] studied flow-induced instability of double-walled carbon
nanotubes based on an elastic shell model and found the critical
flow velocities and loss of stability are closely related to the
ratio of the length to the outer radius.

When the continuum elasticity theory is applied to the
analysis of the nanoscale structures, it is found to be inadequate
because of ignoring the small scale effect. In order to study the
small scale effect on the dynamic analysis of fluid-conveying
CNTs, Lee and Chang [18] applied the nonlocal elasticity
concept for the vibration analysis. They analyzed the effects
of flow velocity on the vibration frequency and mode shape of
the fluid-conveying single-walled carbon nanotube (SWCNT)
with nonlocal elastic theory. In addition, the van der Waals
interaction between inner and outer nanotubes is dependent
of its diameter and has a significant influence on driving
the oscillation of nanotube oscillators [19] and applying to
nanotube bearings [20]. It is important to understand the
effect of van der Waals interaction on the vibration behavior
of double-walled carbon nanotubes (DWCNTs).

In this paper, the effects of aspect ratio and van der
Waals interaction on the vibration frequency of fluid-conveying
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DWCNTs using nonlocal elastic theory is studied analytically.
This is a coupled vibration problem due to the van der Waals
interaction between the inner and outer tubes. As far as we
know, in this paper the coupled vibration equation of fluid-
conveying DWCNTs is the first to be derived and the analytical
solution to the problem is obtained.

2. Analysis

A schematic diagram of a DWCNT with two fixed ends for
conveying fluid, as depicted in figure 1, having inner and outer
diameters, di and do, respectively, is considered as a two-layer
hollow cylindrical tube. The coupled governing equation of
DWCNTs for conveying fluid by considering the effect of van
der Waals interaction between the inner and outer tubes using
the theory of nonlocal continuum mechanics can be expressed
as [14, 21]

E I1
∂4Y1

∂ X4
+ 2mfv

∂2Y1

∂ t ∂ X
+ mfv

2 ∂2Y1

∂ X2
+ ∂2

∂ t2

×
[
(mc1 + mf)Y1 − mc1(e0a)2 ∂2Y1

∂ X2

]
= c(Y2 − Y1) (1)

E I2
∂4Y2

∂ X4
+ ∂2

∂ t2

[
mc2Y2 − mc2(e0a)2 ∂2Y2

∂ X2

]
= c(Y1 − Y2) (2)

where E I 1 and E I 2 stand for the bending rigidities of the
inner and outer tubes, Y1(X, t) and Y2(X, t) are the bending
deflections of the inner and outer tubes, mc1 and mc2 are the
per unit length mass of the tubes, and v and mf are the uniform
mean velocity and the per unit length mass of the flow fluid
in the DWCNT, respectively. e0a is a nonlocal parameter
revealing a nanoscale effect of structure. c is the van der Waals
interaction between the two tubes. Then a coupled relationship
between the two tubes is established. The coupled equation
can be reduced to the same equation in [21] when mf = 0. In
addition, the two equations become two decoupled differential
equations when c = 0 is assumed. Then the DWCNT is
divided into two isolated tubes and they are at two different
resonant frequencies to vibrate. The four terms on the left-
hand side of equation (1) are the stiffness force of the DWCNT
structure, the gyroscopic and centrifugal forces of the flow
fluid, and the inertial force of the structure and flow fluid,
respectively.

The corresponding boundary conditions are

Y1(0, t) = Y1(L, t) = ∂Y1(0, t)

∂ X
= ∂Y1(L, t)

∂ X
= 0, (3)

Y2(0, t) = Y2(L, t) = ∂Y2(0, t)

∂ X
= ∂Y2(L, t)

∂ X
= 0. (4)

The boundary conditions given by equations (3) and (4)
correspond to conditions of zero displacement and zero slope
at x = 0 and x = L, respectively.

The solution of the differential equation given in
equations (1) and (2) can be expressed as

Y1(X, t) = w1(x)eiωt (5)

Y2(X, t) = w2(x)eiωt (6)

where ω is the complex circular frequency.

Figure 1. Schematic illustration of a fluid-conveying double-walled
carbon nanotube with two fixed ends.

(This figure is in colour only in the electronic version)

The dimensionless variables are defined as

x = X/L, yi = wi/L, αi = Ii

I
,

mi = mci

M
, vn = v

√
mf L2

E I
β = ω

√
M L4

E I
,

δ = cL4

E I
, en = e0a

L
, m = mf

M
,

(7)

where M = mf + ∑2
i=1 mci , I = ∑2

i=1 Ii and i = 1, 2 for the
inner and outer tubes, respectively.

Using equations (4)–(6), the governing differential
equations of motion and the associated boundary conditions
can be deduced in the following dimensionless forms:

α1
d4 y1

dx4
+ 2iβvn

√
m

dy1

dx
+ v2

n

d2 y1

dx2

− β2

[
(m + m1)y1 − m1e2

n

d2 y1

dx2

]
= δ(y2 − y1) (8)

α2
d4 y2

dx4
− β2

[
m2 y2 − e2

nm2
∂2y2

∂x2

]
= δ(y1 − y2) (9)

y1(0) = y1(1) = dy1(0)

dx
= dy1(1)

dx
= 0 (10)

y2(0) = y2(1) = dy2(0)

dx
= dy2(1)

dx
= 0. (11)

Equations (8)–(11) are a eigenvalue problem for the
coupled differential system. The eigenfunctions for the
problem can be expressed as

y1(x) = Ceiγ x (12)

y2(x) = Deiγ x (13)

where C and D are constants.
Substituting equations (12) and (13) into equations (8)

and (9), the following equations are obtained:

C[α1γ
4 − 2β

√
mvγ − (v2 + m1ε

2β2)γ 2 + δ

− (m + m1)β
2] − Dδ = 0 (14)

−Cδ + D[α2γ
4 − m2β

2 − m2ε
2γ 2β2 + δ] = 0. (15)

Using equations (14) and (15), a polynomial in the variable γ

of degree 8 can be obtained and its solution is a function of
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frequency β . To obtain the frequency equation, equations (12)
and (13) can be rewritten as

y1(x) =
8∑

j=1

C j e
iγ j x (16)

y2(x) =
8∑

j=1

D j e
iγ j x (17)

where the complex roots γn (n = 1, 2, . . . , 8) are determined
from solving equations (14) and (15). Then, substituting
equations (16) and (17) into equation (15), we obtain the
following relationship:

Cn = λn Dn, n = 1, 2, . . . , 8 (18)

where

λn = α2γ
4
n − m2β

2(1 + ε2γ 2) + δ

δ
. (19)

Finally, substituting equations (16) and (17) into
equations (10)–(11) and using equation (18), the following
equation can be yielded:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
λ1 λ2 · · · λ8

eiγ1 eiγ2 · · · eiγ8

λ1eiγ1 λ2eiγ2 · · · λ2eiγ8

γ1 γ2 · · · γ8

λ1γ1 λ2γ2 · · · λ8γ8

γ1eiγ1 γ2eiγ2 · · · γ8eiγ8

λ1γ1eiγ1 λ2γ2eiγ2 · · · λ8γ8eiγ8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1

D2

·
·
·
·
·

D8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0. (20)

The characteristic equation in dimensionless frequencies β can
be obtained from solving the above condition. If δ → ∞ in
equation (20) is assumed, the (8 × 8) matrix can be reduced
and written as a (4 × 4) matrix and then it represents the
frequency equation of SWCNTs. The frequency of SWCNTs
can be calculated using the (4 × 4) matrix and the result is the
same as obtained from [18].

It should be noted that the equations derived as above
can be used to obtain the frequency for the fluid-conveying
DWCNT, which is different from the previous studies of
DWCNTs [22, 23]. Their method cannot be applied to solve
the problem of the fluid-conveying nanotube.

3. Results and discussion

In this paper, the free vibration equation of the fluid-conveying
DWCNT has been derived by considering the van der Waals
effect and nonlocal elastic theory. The DWCNT can be
considered to be composed of two coaxial SWCNTs coupled
by the van der Waals interaction. We assume that the two

Figure 2. Dimensionless frequencies as a function of dimensionless
flow velocity for the first three modes of a clamped–clamped CNT.

SWCNTs have the same thickness t of 0.35 nm, mass density
mc of 2300 kg m−3 and Young’s modulus E of 1 TPa [24]. In
order to analyze the effect of flow velocity on the frequency of
the DWCNT, we assumed that the flowing liquid is water and
its mass density is 1000 kg m−3. The DWCNT has an inner
diameter di of 0.35 nm and an outer diameter do of 1.75 nm.
According to the calculation, the mass of fluid per unit length
is 9.62 × 10−17 kg m−2. E I 1 and E I 2, the bending rigidities
for the DWCNT, are 5.9 × 10−26 N m and 4.0 × 10−25 N m,
respectively. The dimensionless van der Waals interaction δ is
14 000, which is equivalent to c = 0.069 TPa [25]. The other
geometric and material parameters used in the calculation are
as follows: e0a/L = 0.05 and L/d0 = 10.

In order to compare the results of SWCNTs and
DWCNTs, di = 0.35 nm and do = 1.05 nm for SWCNTs
are assumed in the analysis. Figure 2 shows dimensionless
frequencies β as a function of dimensionless flow velocity
for the first three modes of the clamped–clamped SWCNTs
and DWCNTs. The higher-order vibration modes have the
higher frequencies. When vn = 0, the value of β equals the
natural frequency of the clamped–clamped CNT. As the flow
velocity increases, the value of β decreases. This is because
the centrifugal force is proportional to the square of the fluid
velocity and it acts in the opposite direction to the stiffness
force of the nanotube structure. As the flow velocity increases
to about 2π , the value of β is equal to 0 for the first mode.
This corresponds to the divergence instability of the CNT. The
divergence instability in the second mode takes place when the
dimensionless flow velocity is larger than 8. Furthermore, it
can be found that the frequency of DWCNTs is lower than
that of SWCNTs for the first three modes, especially at high
flow velocity. This is because the mass of DWCNTs is larger
than that of SWCNTs. The larger mass induces the larger
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Figure 3. Dimensionless fundamental frequency as a function of
dimensionless flow velocity for a clamped–clamped DWCNT with
different nonlocal parameters e0a/L .

centrifugal force at high flow velocity and that make a large
decrease in the frequency of DWCNTs. Furthermore, this
figure also shows that the velocity of the vibration-induced
flutter instability of DWCNTs is lower than that of SWCNTs.

Figure 3 shows the dimensionless frequency β of mode
1 as a function of dimensionless flow velocity vn for the
clamped–clamped DWCNT with different nonlocal parameters
e0a/L. The nonlocal parameter e0a/L = 0 denotes the
result obtained using the classical Euler beam model. The
frequency of the clamped–clamped DWCNT is significantly
influenced by the nonlocal parameter, especially at lower flow
velocities. This is because the nonlocal effect due to long
range interactions is relatively large at a lower flow velocity.
Furthermore, increasing the nonlocal parameter decreases the
frequency and the result is similar to that of an SWCNT [18].

The effect of the aspect ratio, L/d , on the fundamental
frequency of the clamped–clamped DWCNT is shown in
figure 4. With an increase in aspect ratio, the fundamental
frequency increases. This implies that the flow velocity
of vibration-induced flutter instability increases for a larger
aspect ratio. Figure 5 depicts the dimensionless fundamental
frequency as a function of dimensionless flow velocity
for the clamped–clamped DWCNT with different van der
Waals interaction parameters δ. According to equation (7),
the relationship between the dimensionless van der Waals
interaction parameters δ and length L is given by δ = cL4

E I .
When c, E and I are constant, the value of δ is proportional to
L4. Therefore, the trends are the same in both figures 4 and 5.
As the value of δ increases, the frequency of the nanotube
increases. This is because the nanotube becomes stiffer due
to a more constrained structure.

Figure 4. Dimensionless fundamental frequency as a function of
dimensionless flow velocity for a clamped–clamped DWCNT with
different aspect ratios L/do.

Figure 5. Dimensionless fundamental frequency as a function of
dimensionless flow velocity for a clamped–clamped DWCNT with
different van der Waals interaction parameters δ.

4. Conclusions

Vibration characteristics of the viscous fluid-conveying
DWCNT using continuum elasticity theory were studied, and
the effect of geometrical and material parameters on the
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fundamental frequency were analyzed, including the nonlocal
parameter, aspect ratio and van der Waals interaction. The
results showed that the frequency of DWCNTs was lower than
that of SWCNTs for the first three modes. When the flow
velocity was high, this trend was more pronounced. The
nonlocal effect on the frequency of mode 1 of DWCNTs
became significant when the flow velocity was low, and
increasing the nonlocal parameter decreased the frequency.
However, the frequency increased as the aspect ratio and the
van der Waals interaction increased, especially at higher flow
velocities.
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